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Abstract

Directed energy deposition (DED) process is a representative metal additive manufacturing technology that uses a flexible deposition

head mainly used for repairs in space and marine industries. The DED process saves time and money as it repairs only damaged

parts and components. Therefore, a geometric control is important to fill the volume of the target damaged area economically and

accurately. However, efficiency depends on process parameters such as laser power, scanning speed. This study proposes a one-

dimensional convolutional neural network (1D-CNN) model to predict the height profile of the DED parts utilizing melt-pool image

data. First, DED experiments were performed for a total of nine cases considering laser power and scanning speed as parameters.

The collected melt-pool image data was pre-processed and only those related to the regions of interest were extracted. Initially, a total

of 15 features were extracted from size, shape, location, and brightness from the melt-pool images. Then, 10 critical ones, selected

through a permutation feature importance evaluation method, were input to the 1D-CNN algorithm to predict height profiles of the

deposited layers. In testing phase, a mean absolute percentage error (MAPE) of 9.55% was achieved, and thus, applicability of the

proposed model was verified. 
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1 Introduction

The directed energy deposition (DED) process is a

representative metal additive manufacturing technique. This

process involves the use of a high-energy heat source, such as

a laser, to irradiate a substrate, creating a molten pool.

Simultaneously, it supplies metal powder or wire to construct

a three-dimensional structure. This method’s advantages

extend beyond repairing parts due to the deposition head’s

freedom in multiple axes. It’s also ideal for producing high-

strength functional components from similar or different

materials. Its versatility has resulted in widespread applications

across high-value industries like aerospace, space exploration,

automotive, and marine. It enables localized repairs of

damaged sections without the need for complete part

replacement, reducing costs and minimizing downtime [1-3].

In the context of repair applications, this process necessitates

functionalities beyond defect management, requiring precise

area filling in damaged sections. Selecting appropriate process
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parameters to achieve the target volume is crucial for productivity,

health, and efficiency. This emphasizes the critical importance of

precise geometric control, particularly concerning three-

dimensional structure fabrication. Among various geometry

factors, controlling height stands out as pivotal. Height directly

influences geometry in layer-by-layer additive manufacturing

processes. And uncontrolled height not only influences the

external quality but also significantly affects the internal. For

example, inappropriate z-offset due to irregularities can lead to

defects like lack of fusion, altering heat or material supply [4,5].

Thus, height control is imperative to ensure both internal and

external quality, securing process reliability. This is why this

research prioritizes controlling height as a quality parameter. 

In fact, there are numerous studies that have analyzed the

correlation between height and quality, depending on process

parameters. Bax et al. [6] analyzed the relationship between

geometry indicator results such as height and width depending

on process parameters like powder supply and scanning speed

in laser cladding. In addition, Feenstra et al. [7] investigated

the impact of build height on the mechanical and corrosion

properties of SS316L manufactured by DED and examined the

relationship between these factors. However, there is another

issue here. Even when using the same process parameters,

there are variations and inconsistencies in geometric factors

such as width and height. This dependency isn’t solely on input

parameter values but relies on values actually produced,

influenced by environmental factors like humidity, temperature,

etc. [8-11]. For instance, higher laser output or powder mass

flow leads to increased energy and material supply, resulting in

larger formations [12-14]. Therefore, current research on

geometry prediction is based on in-process data obtained from

various sources, such as images, temperature sensors, etc.,

rather than relying solely on input parameter values.

Takushima et al. [15] and Hsu et al. [16] predicted the height

of single-layer single-track deposits utilizing melt-pool images

captured through vision systems. Additionally, Kim et al. [17]

developed an artificial neural network (ANN) model to predict

the height of the target layer in a multi-layer, multi-track

toolpath using infrared thermal images, cooling rates, and

others. However, these approaches are limited as they only

consider a singular representative height for each layer or

track. As previously mentioned, despite the same input

parameters, different results occur due to other environmental

factors. Essentially, different heights are observed within the

same layer or track. Consequently, a specific height value

cannot represent all heights for a large area, and there is a limit

to the ability of subsequent layers to compensate for height

errors in previous layers. Therefore, complete geometric

control requires profile-level quality prediction of the

observation area.

Therefore, in this study, a 1D-CNN model is developed to

predict the height profile of each track using melt-pool images

collected by a CCD camera during the process. Initially, DED

experiments are conducted under various process conditions,

and melt-pool images during the process and the height of

deposited material are captured using a line scanner. Image

pre-processing is used to extract regions of interest (ROI) from

each sensor’s features obtained from melt-pool images, and

track-specific deposition height profiles are obtained from the

line scanner. Data reorganization is performed to synchronize

the time information of the collected melt-pool images and

height data, and data size is standardized using interpolation to

resolve data size inconsistencies due to data collection

variations due to process parameters and processing time.

Finally, a 1D-CNN algorithm is developed using the processed

data to predict the height profiles in the DED process.

2 DED Testbed and Sensor Module 

2.1 DED Experimental Testbed 

The experimental setup employed for data collection in the

DED process was composed of the following main

components: a fiber laser, chiller, metal powder supply, dust

collector, and a 4-axis CNC machine equipped with a

Fig. 1 Photo of the DED experimental testbed
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deposition laser head, as shown in Fig. 1. The continuous

wave single mode fiber laser (RFL-C1000, Wuhan Raycus

Fiber Laser Technologies) had a maximum power output of

1,000W, a wavelength of 1080 nm, and a laser diameter of

3 mm, and acts as a primary heat source. The laser was

attached to the deposition head and positioned in the Z-axis

direction of the CNC equipment (DH-400-2Z, Harim Machinery).

It emitted heat onto the metal substrate. The metal powder was

supplied via the powder feeder (GTV-Powder Feeder RF,

GTV) and guided towards the melt pool using a delivery gas.

In addition, an inert shielding gas was used to prevent

oxidation throughout the deposition process. The gas used for

both delivery and shielding purposes was argon. The metal

powder, delivery gas, and shielding gas were provided in a

coaxial manner to the melt-pool through the deposition head.

2.2 Sensor Module for Data Acquisition

In Fig. 2, sensors were selected and installed to capture

melt-pool images and measure the geometry of the deposited

area. Initially, a non-contact sensor, the CCD camera (CM3-

U3-13Y3M, FLIR), was installed for capturing melt-pool

images. Positioned at a 31-degree angle and 290 mm distance

from the melt-pool, this sensor was equipped with a near-

infrared bandpass filter (BN 850, MidOpt) operating in the

840-865 nm wavelength range. Designed specifically for

capturing the melt-pool while filtering laser reflections and

visible light wavelengths, this filter ensured minimal noise.

Python was utilized for gathering the melt-pool images,

collecting data at an approximate speed of 10Hz due to data

storage processing time. Additionally, a line scanner (LJ-

X8080, Keyence) was selected and installed to measure the

geometry of the deposited area. From the data collected

through this sensor, a data pre-processing process was

performed to extract the stack height profiles.

2.3 Sensor Data Pre-processing

The OpenCV library was utilized for data preprocessing, as

shown in Fig. 3, to identify regions of interest (ROI) from the

data obtained by the CCD camera and line scanner. Initially, in

the case of the CCD camera, despite the installation of the

near-infrared band-pass filter, additional noise was captured

due to the recoil pressure of the melt-pool and oxidation-

induced explosions. In order to resolve this issue, a

thresholding algorithm with a value of 165 was used to

mitigate the effect of the noise. Afterward, the contours of the

melt pool within the captured region were identified, and the

largest contour was selected as the final melt pool contour. A

mask was created using this contour, replacing the original

data and isolating the ROI that corresponds to the melt-pool.

In addition, the data obtained from the line scanner

contained information not only from the intended deposition

areas but also from the entire scanned region, including sharp

details of the deposited surface owing to its high resolution.

Therefore, pre-processing was crucial for identifying the target

deposition areas and smoothing the sharp surface details to

accurately extract the desired deposition height. For this

process, tilting compensation was applied using the manufacturer-

provided software to eliminate noise associated with camera

Fig. 2 Photo of the sensor module using two non-contact sensors -

CCD camera and laser displacement sensor

Fig. 3 Sensor data pre-processing steps
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physical settings. Subsequently, the raw height data was saved as

a CSV file and processed using the OpenCV library as well. By

applying a 25 × 25 Gaussian filter twice, the visibility of height

differences between deposition tracks was improved. Moreover,

to maintain only substrate plane-related information (set as the

zero point) and discard data from areas below this plane (with

negative values), these regions were replaced with 0. Finally, the

largest contour representing the target area was extracted, thereby

isolating the ROI within the deposition area.

3 DED Experiments 

3.1 DED Experimental Setup

For DED experiments, two key process parameters—laser

power and scanning speed—were selected. Both parameters

were investigated at three levels, resulting in a total of 9 cases

using a full factorial experimental approach. To ensure

consistency, the experiments were replicated 4 times for all

process conditions. Gas-atomized stainless steel 316L

powder (Mecto 1016A, Oerlikon Metco) with a particle size

ranging from 45 to 106 µm was used in the experiments, as

illustrated in Fig. 4. The powder was supplied through a

powder feeder with a rate of 10 g/min. Additionally, a carbon

steel (AISI 1045) substrate having a size of 100 × 150 × 10

(mm) was prepared, and its material compositions are given

in Table 1. Argon, an inert gas, was used for delivery and

shielding gas, and it was provided at rates of 14 and 12 l/min,

respectively. Additional experimental conditions are

summarized in Table 2.

3.2 Multi-track Specimens

The single-layer multi-track rectangular specimens were

deposited, and their size was 20 × 15 (mm). Regarding multi-

track deposition, an overlap ratio of 25% was selected, situated

within the stable deposition structure range of 20% to 40%

[19]. To determine the overlap distance for each process

condition, single-track depositions were conducted, and the

overlap distance was calculated based on the width of the single-

tracks measured using a laser microscope (VK-X200, Keyence).

The measured widths of the single-tracks and the calculated

overlap distances for each case were given in Table 3.

4 Height Profile Prediction Model

4.1 Feature Extraction

In this study, melt-pool images were utilized to predict layer

height. The melt-pool is created with high heat by supplying

Fig. 4 SEM image of gas atomized stainless steel 316L powder [18]

(Adapted from Ref. 18 basis of OA)

Table 2 Experimental condition

Lase power (W) 300, 400, 500

Scanning speed (mm/min) 400, 500, 600

Mass flow rate of powder (g/min) 10 

Delivery gas flow rate (Argon) (l/min) 14 

Shielding gas flow rate (Argon) (l/min) 12

Stand off (mm) 7 

Overlap (%) 25 

Table 1 The material compositions of powder and substrate

Element (wt.%) Fe Ni Cr Mo Si Mn C

Powder 

(SAE 316L)
Bal. 12 17 2.5 2.3 - -

Substrate

 (AISI 1045)
Bal. - - - 0.7 0.45

Table 3 Experimental overlap calculation

Experimental DED Process parameters Measured single-track 

width (µm)

Calculated overlap 

distance (µm)Case Lase power (W) Scanning speed (mm/min)

1

300

400 959.15 719.36

2 500 919.27 689.45

3 600 896.41 672.30

4

400

400 1211.13 908.35

5 500 1115.87 836.90

6 600 1035.35 776.51

7

500

400 1383.60 1293.94

8 500 1237.04 1199.70

9 600 1173.79 1169.47
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metallic material, and it solidifies to form a layer. Several

studies have analyzed the correlation between process

parameters and melt-pool characteristics, revealing that they

contain a variety of physical information, including internal

defects and external geometry [20,21]. Specifically, the study

used features related to melt-pool size, shape, position, and

brightness to predict layer height in the track. Among these,

some features were analyzed in the previous work of the

authors’ research group, where correlations between melt-

pool features, track widths, and defects were analyzed

[22,23]. 

To predict the height based on melt-pool information, a total

of 15 features related to the size, shape, position, and

brightness of the melt-pool were first extracted, as shown in

Table 4. The 4 features were size-related: area (representing

the pixel count in the melt-pool), height and width of the

ROI’s circumscribed rectangle, and height based on moment.

There were 6 shape-related features: aspect ratio (ratio

between the rectangle of width and height), long of ellipse

(major axis length of an approximate ellipse), short of ellipse

(minor axis length of an approximate ellipse), angle (degree of

the major axis), extent (ratio between actual area and external

boundary) and solidity (ratio of the area of the contour to the

area of the convex hull of the contour). The 2 position-related

features were the center x and center y, which were centered

on the brightest point. Lastly, the 3 features were brightness-

related: max. value, mean value, and intensity (overall

brightness).

4.2 Feature Selection 

When constructing prediction models using features, if

irrelevant features or an excessive number of features are used,

it can lead to overfitting or reduced prediction performance of

the model. Thus, effective features should be selected [24,25].

In this study, permutation importance evaluation was carried

out to select effective features. This method was proposed by

Lio in 2001 as one of the methods used to evaluate the

importance of each feature in machine learning regression

models [26]. This measures the importance level of each

feature for the performance outcome of the prediction model.

First, select a specific feature, randomly configure the value of

that feature, and then retrain the model. The changing

predicted performance is then measured and compared to the

original performance. A greater change in this performance

indicates that the feature is more important. The results of

permutation feature importance evaluation for the previously

extracted 15 features are shown in Table 5. From these results,

a total of 10 features were selected as effective features in

Table 4 Extracted melt-pool features

Group Features

Size (4)
Area, height of the ROI, width of the ROI,

 height of the moment

Shape (6)
Aspect ratio, long of ellipse, 

short of ellipse, angle, extent, solidity

Position (2) Center x and Center y

Brightness (3) Max. value, mean value, intensity

Fig. 5 Schematic of input and output feature extraction process

Table 5 Results of permutation feature importance evaluation 

Rank Features Importance value

1 Center y 0.585877

2 Height of the ROI 0.432754

3 Max. value 0.346212

4 Mean value 0.229770

5 Center x 0.173649

6 Solidity 0.158134

7 long of ellipse 0.151303

8 Angle 0.135796

9 Height of the moment 0.129257

10 Intensity 0.105674

11 Extent 0.074796

12 Aspect ratio 0.055010

13 Short of ellipse 0.029774

14 Area 0.027112

15 Width of the ROI 0.026935
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order of decreasing values among those with an importance

value of 0.1 or higher.

4.3 Data Reorganization and Size Standardization Process

As described in Section. 3, the DED experiments were

conducted for 9 cases, each replicated 4 times. During this

iterative process, melt-pool images and specimen height data

were collected. In particular, melt-pool images are collected

in time series sequence along the toolpath. Therefore, in the

case of a zig-zag path, some tracks require the order of data

to be reversed. In addition, the time series information of the

melt-pool image should be synchronized to the location

where the image was collected through data reorganization

process.

To utilize collected sensor data for machine learning

model, input data sizes must be uniform. However, different

scanning speeds result in the collection of different numbers

of melt-pool images—fewer images for faster speeds and

more for slower ones. Consequently, the number of collected

melt-pool images for a track varies due to process conditions.

Furthermore, the specimens’ heights and widths were

different under different process conditions. Despite using

the same toolpath planning for specimens that have identical

dimensions, inevitable differences occur. Hence, the

dimensions of specimens collected via the line scanner also

differ. This causes differences in the size of rows and

columns of data. To resolve these issues, the data size for

each track was standardized to 200 × 1 using interpolation.

This process aimed to ensure uniformity in data shapes

despite varying quantities of collected melt-pool images for

different process conditions and specimens with diverse

heights and widths. The data-specific schematic process is

depicted in Fig. 5. 

As a result, pre-processed input data set (melt-pool data)

has a shape of 200 × 10 per track (time series × features),

while the output data set (height data) has a shape of 200 × 1

per track (time series × height). The details of total datasets are

given in Table 6, which was split into a 3 : 1 ratio for training

and test data. Consequently, the final data set comprised 534

data for training and 178 data for test.

4.4 1D CNN-based Height Profile Prediction Algorithm

The model that predicts the height profile of the track was

developed based on the 1D-CNN algorithm. The 10 features

selected in section 4.2 were used as input data, and the height

Fig. 6 Prediction results by case (1 sample for track per case)

Table 6 Datasets for prediction model

Case Number of tracks 4 Cycles

Case 1 22 88

Case 2 23 92

Case 3 23 92

Case 4 18 72

Case 5 19 76

Case 6 20 80

Case 7 17 68

Case 8 18 72

Case 9 18 72

Total 712

� Train data: 534 / Test data: 178 (split at a 3 : 1 ratio)

Table 7 Grid search for model optimization

Parameters Search space

Kernel size 1, 2, 3, 4, 5

Number of neurons 32, 64, 128, 256

Running rate 0.01, 0.001, 0.0001

Number of channels per layer
[16, 32, 64], [32, 64, 128], 

[64, 128, 256]

Activation function 

of convolutional layers
ReLU, ELU

Activation function of dense layers ReLU, ELU
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profile to be predicted was set as output. This model was

structured with 3 convolution layers, and rectified linear unit

(ReLU) and exponential linear unit (ELU), which are widely

used in non-linear regression models, especially for efficient

handling of large-scale data, were considered as activation

functions for both the convolutional and dense layers. For

model optimization, optimal hyper-parameters were explored

through grid search, as shown in Table 7. Based on the mean

absolute percentage error (MAPE) metric, the following

hyper-parameters were selected: kernel size 2, number of

neurons 64, learning rate 0.001, number of channels per layer

(16, 32, 64), activation function of convolutional layer ReLU

and activation function of dense layer ELU, and Adam was

used as the optimizer. Ultimately, the performance of the

optimized model was evaluated using test data, demonstrating

a performance with a final MAPE of 9.55%. Results

comparing predicted data to actual data for each case are

graphically illustrated in Fig. 6.

In order to evaluate the excellence of the artificial

intelligence model built in this study, model performance in

similar studies was compared, as shown in Table 8. Takushima

et al. [15] developed an in-process height prediction model

using a coaxially installed vision camera system in the WAAM

process, achieving a MAPE of 11.68%. Hsu et al. [16] built a

height prediction model with a MAPE of 10.69% using a

vision camera installed off-axially in the DED process.

However, these methods were performed only on a single

track without considering height variations due to track

overlaps. Kim et al. [17] constructed a height prediction model

of MAPE 12.62% using data from an IR camera installed

coaxially in the DED process. Although it considered multi-

track and layer toolpaths, predictions were made about the

height of a specific target layer. And instead of predicting

continuous heights, height prediction was performed at a

specific point. In contrast, the method proposed in this study

utilized off-axially installed CCD camera data in the DED

process to build a prediction model with excellent performance

and a MAPE of 9.55% among the compared results. In

addition, the toolpath of multi-track was taken into

consideration, the overlap of tracks was also reflected, and the

continuous height of the stacked tracks, that is, the profile, was

predicted, rather than focusing only on predictions limited to

specific measurement points.

In the long term, predictions considering the profile

proposed through this study can compensate for height errors

generated in the previous layer through a feedback system by

changing parameter values in the next layer. Additionally, this

allows layer-by-layer additive quality control to achieve

intended dimensions with minimal surface processing and

provides thermal stabilization to enhance internal quality and

mechanical properties. It can also contribute to strategic

decisions about the most economical and efficient time for

subtractive machining when performing hybrid processes.

5 Summary and Conclusions

This study developed a comprehensive methodology for

predicting height profiles in the DED process. It involved

collecting data using experimental equipment, utilizing sensors

for measurements, and conducting pre-processing to apply it to

a deep learning model.

Two non-contact sensors, the CCD camera and the line

scanner, were utilized to obtain data, capturing melt-pool

images and extracting height information from scanned areas,

followed by meticulous data pre-processing. The DED

experiments focused on two key process parameters: laser

power and scanning speed. Employing a full factorial

experimental approach, the design encompassed two factors at

three levels, resulting in a total of 9 cases, each repeated 4

times. Particularly, the specimens intended for deposition were

single-layer multi-track tool-paths with a rectangular

configuration measuring 20 × 15 (mm).

15 features related to melt-pool size, shape, brightness, and

position were extracted for the model. By evaluating

permutation feature importance, 10 effective features were

identified for model construction. Interpolation was applied to

align data shapes for each track due to disparities in data sizes

caused by different scanning speeds and specimen sizes.

The final pre-processed dataset consisted of 534 training

data and 178 test data. A 1D-CNN-based height profile

prediction model utilized 10 features as input and predicted

height profiles as output. Following optimization through grid

search, the model exhibited excellent predictive performance

with a MAPE of 9.55% on test data. Results comparing

predicted and actual data for each case are presented in Fig. 6.

In conclusion, a methodology has been developed to utilize

machine learning models in the DED process to predict track

height profiles based on melt-pool images. This is considered

an important discovery for improving the efficiency of

additive manufacturing processes by strengthening the quality

control and regulation of DED process.
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Table 8 Comparison of height prediction performance between the proposed and existing methods

Authors MAPE (%) Toolpath Predicted factor

Proposed 9.55 Multi-track and single-layer Height profile per track

Takushima  et al. [15] 11.68 Single-track and multi-layer Height of measuring position 

Hsu et al. [16] 10.69 Single-track and multi-layer Height of measuring position

Kim et al. [17] 12.62 Multi-track and multi-layer Height of measuring position
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